

Concept Test

Duration : 90 Min. Max. Marks : 90

Date :

Sample Paper

CLASS

VIII

General Instructions:

- **1.** All questions are compulsory.
- **2.** Each question is allotted ONE mark for each correct response.
- **3.** No negative marks for incorrect response.
- **4.** There is only **ONE** correct response for each question. Filling up **MORE THAN ONE** response in each question will be treated as wrong response and marks for wrong response will be deducted accordingly.
- **5.** Use of calculators is not allowed.

Section – A (Science)

1. A brick is kept in three different ways on a table as shown in figure. The pressure exerted by the brick on the table will be:

(c) maximum in position C

- (d) equal in all cases
- **2.** Whenever the surfaces in contact tend to move or move with respect to each other, the force of friction comes into play:
 - (a) only if the objects are solid.
 - (b) only if one of the two objects is liquid.
 - (c) only if one of the two objects is gaseous.
 - (d) irrespective of whether the objects are solid, liquid or gaseous.

3. An object is vibrating at 50 hertz. What is its time period?

(a) 0.02 s (b) 2 s (c) 0.2 s

- **4.** 1 hertz is equal to:
- (b) 10 vibrations per minute
 - (d) 600 vibrations per minute
- 5. Which of the following solutions will not make the bulb in figure glow?
 - (a) sodium chlorides

(a) 1 vibration per minute

(c) 60 vibrations per minute

- (b) copper sulphate
- (c) silver nitrate
- (d) sugar solution in diluted water

20.0 s

(d)

STUDY Mate

6.	The earth's plate resp	onsible for causing ear	thqua	akes is:					
	(a) the crust of the earth			the mantle of the	e earth				
	(c) the inner core of	the earth	(d)	the outer core of	the e	earth			
7.	Consider the list of te	rms given below:	. ,						
	(i) Seismic Zone	(ii) Fault Zone	(iii)	Mantle	(iv)	Inner Core			
	The boundaries of the	e earth's plate are know	n as:		. ,				
	(a) (i) and (ii)	(b) (i) and (iii)	(c)	(iii) and (iv)	(d)	(ii), (iii) and (iv)			
8.	Consider the list of te	rms given below:	()	· / · · /	()				
	(i) Tsunami	(ii) Landslide	(iii)	Floods	(iv)	Lightning			
	Earthquakes can cau	se:	()		()	5 5			
	(a) (i), (ii) and (iii)	(b) (ii) and (iv)	(c)	(ii), (iii) and (iv)	(d)	(iii) and (iv)			
9.	Light is falling on sur	face S_1, S_2, S_3 as shown	ı in fi	gure:	()				
		1, 2, 3							
	///			\sim					
	·····	$-\sim$	\sim	$\sim \sim \sim \sim$	×	\sim			
	Surface Si	Surface S ₂	1	Surfa	ice S	3			
	Surfaces on which th	e angle of incidence is	equai	to the angle of ref	lectio	on is/are:			
	(a) S_1 only		(d)	$S_1 \text{ and } S_2 \text{ only}$	6				
10	(c) S_2 and S_3 only There are imposed to a 1 D		(a)	All the three sur		C			
10.	Two militors A and B a			each other as show	VII 1II	ingure:			
		JXX	K.						
		₹ 90°	×,	· ,					
		₹₹ <u>90</u> °							
		1 500							
	A	7 \ \		K R					
	11	k		D					
	A ray of light incident	on mirror A at an angle	of 25°	° falls on mirror B a	after 1	reflection. The angle			
	of reflection for the ra	y reflected from mirror	B woi	ıld be:		C			
	(a) 25°	(b) 50°	(c)	65°	(d)	115°			
11.	Suppose a new planet	is discovered between	Uran	us and Neptune. It	s tim	e period would be:			
	(a) less than that of I	Neptune.	(b)	more than that o	f Nep	otune.			
	(c) equal to that of Ne	eptune or Uranus.	(d)	less than that of	Uran	us.			
12.	The change in season	is on the earth occurs l	becau	se:					
	(a) the distance betw	een the earth and the s	sun is	s not constant.					
	(b) the axis of rotatio	n of the earth is paralle	el to tl	ne plane of its orbi	t.				
	(c) the axis of rotatio	n of the earth is perpen	dicul	ar to the plane of i	ts orl	bit.			
	(d) the axis of rotatio	n of the earth is tilted v	with r	espect to the plane	e of it	s orbit.			
13.	The first of a month	is the new moon day.	On f	ifteenth of the same	me n	nonth, which of the			
	following figures woul	d represent the phase of	of the	moon?					
	(a)	(b)	(c)		(d)				

-(2)-

14.	Incomplete combustion of fuel such as petrol	and	diesel gives:					
	(a) nitrogen oxide (b) sulphur dioxide	(c)	carbon monoxide	(d)	carbon dioxide			
15.	Which of the following procedures will give you water free from all impurities?							
	(a) adding chlorine tablets	(b)	distillation					
	(c) boiling	(d)	filtration					
16.	Which is a thermosetting plastic?							
	(a) Melamine (b) Polythene	(c)	PVC	(d)	Nylon			
17.	Which of the following is not a common prope	erty of	fplastics?					
	(a) Non-reactive	(b)	Light in weight					
	(c) Durable	(d)	Good conductor of	ofele	ctricity			
18.	Which of the following groups contain all synt	thetic	c substances?					
	(a) Nylon, Terylene, Wool	(b)	Cotton, Polycot, R	layon	l			
	(c) PVC, Polythene, Bakelite	(d)	Acrylic, Silk, Woo	01				
19.	Metals generally react with dilute acids to pr	oduc	e hydrogen gas. W	hich	one of the following			
	metals does not react with dilute hydrochlori	c acio	1?					
	(a) magnesium (b) aluminium	(c)	iron	(d)	copper			
20.	The metal which produces hydrogen gas on a	reacti	ion with dilute hyd	lroch	loric acid as well as			
	(a) coppor		aluminium	(4)	adium			
01	(a) copper (b) from	(C) moto	llio oridoa ora ooid	(u) lia in	sourum noture Solution of			
21.	which of the following oxides in water will cha	ange	the colour of blue l	litmu	is to red?			
	(a) sulphur dioxide (b) magnesium oxid	le (c)	iron oxide	(d)	copper oxide			
22.	Choose the correct statement from the follow	ving:						
	(a) It is difficult to transport natural gas through pipes.							
	(b) The disadvantage of natural gas is that it can not be used directly for burning in homes.							
	(c) Natural gas is stored under high pressur	e as c	compressed natura	l gas	3.			
	(d) Natural gas cannot be used for power gen	nerati	on.					
23.	The calorific value of a fuel is expressed in a	unit	called:					
	(a) kilojoule per litre	(b)	kilogram per mil	ilitre	:			
	(c) kilojoule per gram	(d)	kilojoule per kilo	gran	1			
24.	Shyam was cooking potato curry on a <i>chulh</i> vessel was getting blackened from outside. It	<i>ia</i> . To may	his surprise he o be due to:	bser	ved that the copper			
	(a) proper combustion of fuel.	(b)	improper cooking	g of p	otato curry.			
	(c) improper combustion of the fuel.	(d)	burning of copper	rves	sel.			
25.	Polyester is repeating units of							
	(a) Ether (b) Beads	(c)	Carbon	(d)	Ester			
26.	Which one of the following is metal?							
	(a) C (b) N	(c)	Na	(d)	0			
27.	Which non-metal catches fire if the exposed	to air	·5					
	(a) Sodium (b) Phosphorous	(c)	Calcium	(d)	Uranium			
28.	The layer containing petroleum oil & gas is	<i></i>	- 1					
	(a) Above that of water	(b)	Below water					
~~	(c) Between water and sand	(d)	Below sand					
29.	In the presence of water, ignition temperatur	re of j	paper 1s	(1)				
	(a) Decrease (b) Increase	(C)	Remain constant	: (d)	None of these			

30.	Fir	e extinguisher						
	(a)	Cuts off the supply	of ai	r	(b)	Brings down the t	emp	erature of fuel
	(c)	Both (a) & (b)			(d)	None of these		
31.	Wh	ich one of the follow	ing o	crops would enrich	the	soil with nitrogen?		
	(a)	Apple	(b)	Pea	(c)	Paddy	(d)	Potato
32.	Fis	h liver oil is rich in						
	(a)	Vitamin A and B	(b)	Vitamin B and C	(c)	Vitamin A and D	(d)	Vitamin D only
33.	The	e best technique of v	vate	ring the fruit plant	s an	d tall trees is-		
	(a)	chain pump metho	d		(b)	sprinkler method		
	(c)	moat			(d)	drip method		
34.	Yea	ast is used for produc	ction	of				
	(a)	sugar	(b)	alcohol	(c)	hydrochloric acid	(d)	oxygen
35.	Wh	ich of the following o	cann	ot be used as a foo	d pre	eservative?		
	(a)	Sodium Metabisulp	hite		(b)	Sodium Hydroxide	2	
	(c)	Sodium Benzoate			(d)	Citric Acid		
36.	The	e microorganisms wh	nich o	can reproduce and	mult	tiply only inside the	cells	s of other organisms
	are		<i>a</i> .	_ ·		D	(1)	
	(a)	Protozoa	(b)	Fungi	(c)	Bacteria	(d)	Virus
37.	The	e parasite called plas	smoo	dium causes a dise	ease	known as	(1)	5
	(a)	Measles	(b)	Polio	(C)	Malaria	(d)	Dengue
38.	The	e organelles which p	rovi	de energy for all th	e ac	tivities of cell is	(1)	5.1
	(a)	Chloroplast	(b)	Mitochondria	(C)	Golgi Bodies	(d)	Ribosomes
39.	Alo	ong and branched ar	nima		()	NT 11	(1)	0 (1 11
40	(a)	Muscle cell	(D)	Epithelial cell	(C)	Nerve cell	(a)	Cartilage cell
40.	wn		ന്ദുബ പ്ര		(a)	Nite chandria	11.7 (J)	Chlangelasts
41	(a)	Nucleus	(D)	vacuole	(C)	Mitochondria	(a)	Chloroplasts
41.	wn			Amagha	(a)	DDC	(പ)	Dath (a) and (b)
40	(a) Th	WBC	(U) 07700	AIIIOEDa	(C)	KBC	(a)	Both (a) and (b)
42.	(a)	Coll Mombrono	(h)		(0)	Chloroplast	(4)	Coll woll
12	(a) Wh	ich of the following	(U) nim	Nucleus	(C)	morphosis2	(u)	Cell wall
тэ.	(a)	Fish	annin (h)	Frog	(c)	Silk moth	(പ)	Mosquito
44	(a) On	e of the following or		in the reproductive		stem of flowering	(u) nlant	ts as well as that of
	hu	mans. This is	cuis	in the reproducti	ve sy	stem of nowering	pian	
	(a)	Sperm Ducts	(b)	Anther	(c)	Ovary	(d)	Style
45.	The	e offspring formed as	s a re	esult of sexual repr	rodu	ction exhibits more	e vari	iations because
	(a)	Sexual reproductio	n is a	a lengthy process				
	(b)	Genetic material co	omes	from two parents	of di	ifferent species		
	(c)	Genetic material co	omes	s from two parents	of sa	ame species		
	(d)	Genetic material co	omes	s from many paren	its			
				Section – B (M	lathe	ematics)		

46. Which of the following is the reciprocal of the reciprocal of a rational number?

- (a) -1 (b) 1
- (c) 0

(d) rational number itself

47.	Which of the following n and $n + 1$?	is the	e number of non-pe	rfect	square between th	e squ	ares of the numbers
	(a) <i>n</i> + 1	(b)	n	(c)	2n	(d)	2 <i>n</i> + 1
48.	If the digit in one's pl	ace of	a number is 3, the	en th	e ending of its cub	be wil	l be:
	(a) 3	(b)	6	(c)	7	(d)	9
49.	Two years ago, my ag	e was	'x' years, 5 years a	igo n	iy age was?		
	(a) $(x + 7)$ years	(b)	(x - 2 - 5) years	(c)	(x-5) years	(d)	(x-3) years
50.	Which of the following	g is no	ot a parallelogram?		() 5	()	() 5
	(a) square	(b)	trapezium	(c)	rhombus	(d)	rectangle
51.	Which of the following	g is th	the degree of $2 - x^2 + x^2$	$-x^{3}?$		()	0
	(a) 2	(b)	3	(c)	4	(d)	7
	1			. ,			
52.	0 reduced by $\frac{1}{2}$ is:						
	. 1		1		_		_
	(a) $\frac{-}{2}$	(b)	$-\frac{1}{2}$	(c)	2	(d)	-2
53.	Which of the following	g can	be the square of a	natu	ral number ' <i>n</i> '?		
	(a) sum of the square	es of f	irst <i>n</i> natural num	bers			
	(b) sum of the first <i>n</i>	natu	ral numbers.				
	(c) sum of first $(n-1)$) natı	aral numbers.				
	(d) sum of first 'n' ode	d natı	aral numbers.				
54.	Which of the following	g is th	ie co-efficient of y i	n –5.	xyz?		
	(a) -5 <i>xz</i>	(b)	-5x	(c)	-5 <i>y</i>	(d)	-5
55.	Which of the following	g are	the next-two triang	gular	numbers 1, 3, 6, 1	10, _	and
	(a) 13 and 17	(b)	14 and 21	(c)	15 and 21	(d)	16 and 25
56.	If the parallel sides of	a pa	callelogram are 2 c	m ap	art and their sum	is 10	cm, then its area is
	(a) 20 cm^2	(b)	5 cm^2	(c)	10 cm^2	(d)	none of these
57.	If ' x ' is an even numb	er, th	en which of the foll	lowin	ig is the next odd r	numt	per?
	(a) $x + 1$	(b)	<i>x</i> + 2	(c)	x-1	(d)	x - 2
58.	Which of the following	g is th	e usual form of 5.0)5 × 1	06?		
	(a) 505000	(b)	50500000	(c)	5050000	(d)	50500000
59 .	Which of the followin	g is eo	qual to 1 kilolitre?				
	(a) 1000 mililitres	(b)	100 dm^3	(c)	1 dm^3	(d)	$1000 dm^3$
60.	Which of the following	g is th	the value of $\left(\frac{4}{5}\right)^{-9} \div \left(\frac{4}{5}\right)^{-9}$	$\left(\frac{4}{5}\right)^{-9}$?		
	$\langle \cdot \rangle$ 18		(0)				(-) ⁹
	(a) $\left(\frac{4}{5}\right)$	(b)	$\frac{4}{\overline{r}}$	(c)	1	(d)	$\left(\frac{5}{4}\right)$
	(5)		5				(4)
61.	Which of the following	g is th	e cube root of $\frac{-64}{243}$?			
	(a) $\frac{7}{4}$	(b)	$-\frac{7}{4}$	(c)	$\frac{4}{7}$	(d)	$-\frac{4}{7}$
62.	Which of the followin	g is tł	ne numerical co-eff	icien	t of x^2y^2 ?		,
	(a) 0	(b)	1	(c)	x^2	(d)	y^2
63.	The sides of a pentage	on are	produced in order	. Whi	ch of the following	; is th	e sum of its exterior
	angles?						

64.	Which of the following is the value of 'x' in $\left(\frac{1}{x}-1\right)^2 = 4$?								
	(a) $\frac{1}{3}$	(b)	$-\frac{1}{5}$	(c)	$-\frac{1}{3}$	(d)	$\frac{1}{5}$		
65.	1 micron is equal to $\frac{1}{1000000}$ m. Which of the following is its standard form?								
	(a) 1.1 × 10 ⁻⁵	(b)	1.6×10^{-5}	(c)	0.1×10^{-6}	(d)	1.0×10^{-6}		
66 .	Which of the followin	g is th	e number of non-p	perfec	et square number b	oetwe	een 17^2 and 18^2 ?		
	(a) 613	(b)	35	(c)	34	(d)	70		
67.	Which of the following	g is eq	ual to x?						
	$\frac{12}{5}$	<i>~</i> .	$12(-1)^{\frac{1}{2}}$		$(\sqrt{2})^{\frac{2}{2}}$		<u>12</u> <u>7</u>		
	(a) $x^7 - x^7$	(b)	$\sqrt{(x^4)^3}$	(c)	$(\sqrt{x^3})^3$	(d)	$x^7 \times x^{12}$		
68.	Which of the followin	g qua	drilaterals is a regu	ular c	uadrilateral?				
	(a) rectangle	(b)	square	(c)	rhombus	(d)	kite		
69.	Which of the followin	g can	be a perfect square	e?					
	(a) a number ending	g in 3 c	or 7.						
	(b) a number ending	with	odd number of zero	os.					
	(c) a number ending	g with	even number of ze	ros.					
	(d) a number ending	; in 2.							
70.	Which of the followin	g is a j	pythagorean triple	t?					
	(a) n^2 , $n^2 - 1$ and $n^2 + 1$	- 1		(b)	$(n-1), (n^2-1)$ and	d (<i>n</i> ²	+ 1)		
	(c) $(n+1), (n^2-1)$ an	d (n^2 +	- 1)	(d)	$2n$, $(n^2 - 1)$ and $(n^2 - 1)$	(2 + 1)			
71.	In the following state	ements	s which statement	is tr	ue.				
	(a) All prime number	rs are	odd numbers.						
	(b) Every odd number greater than 1 is prime number.								
	(c) 2 is a prime num	ıber.							
	(d) Sum of two prime	es is e	ven.						
72.	Diagonals of which of	the fo	llowing quadrilater	rals d	o not bisect it into t	two c	congruent triangles?		
	(a) rhombus	(b)	trapezium	(c)	square	(d)	rectangle		
73.	Which of the followin	g is th	le value of $[{(-1)^{-1}}]^{-1}$	¹] ⁻¹ ?					
	(a) 0	(b)	-1	(c)	1	(d)	none of these		
74.	Which of the followin	g is a	correct statement	?					
	(a) cube of a negativ	e nun	ıber is always posi	tive.					
	(b) cube of a negativ	e nun	iber is always neg	ative.					
	(c) cube of a negativ	e num	ber may be positiv	ve or	negative.				
	(d) all of the above.								
75.	If a number of <i>n</i> -digits is the number of digit	s is a p ts of it	erfect square and ' s square root?	n' is a	n even number, th	en w	hich of the following		
	(a) $\frac{(n-1)}{2}$	(b)	$\frac{n}{2}$	(c)	$\frac{n+1}{2}$	(d)	2 <i>n</i>		
76.	Which of the followin	g expr	ression has value '	0'at	x = -1 and $y = 2?$				
	(a) $2y - 2x^2$	(b)	$2y^2 - x$	(c)	$2x^2 - 2y$	(d)	$2x^2 - y$		
77.	What kind of polynom	nial is	pqr?						
	(a) Monomial	(b)	Binomial	(c)	Trinomial	(d)	None of these		

78.	Value of [100 – (99) ⁰] ×	100						
	(a) 10000	(b)	100	(c)	9900	(d)	99000	
79.	Which of the following	is th	e difference betwee	en th	e squares of 21 and	d 221	?	
	(a) 21	(b)	22	(c)	42	(d)	43	
80.	Which of the following is the standard form of 0.00001275?							
	(a) 1.275 × 10 ^{−5}	(b)	1.275×10^{5}	(c)	127.5×10^{-7}	(d)	127.5×10^{7}	
81.	Which of the following	is eq	ual to its own cube	?				
	(a) -1	(b)	-2	(c)	-3	(d)	-9	
82.	If $8^{x+1} = 64$, then value	e of 3	$^{2x+1}$ is					
	(a) 1	(b)	3	(c)	9	(d)	27	
83.	If a, m, n are positive i	nteg	ers, then $\left\{\sqrt[m]{\sqrt{n}a}\right\}^{mn}$	is eq	ual to			
	(a) a^{mn}	(b)	a	(c)	$a^{m/n}$	(d)	1	
84.	If $3x + \frac{2}{x} = 7$, then $\left(9x\right)$	$^{2} + \frac{4}{r}$	$\left(\frac{1}{2}\right) =$					
	(a) 25	к (b)	37	(c)	49	(d)	30	
85.	If $x^2 + \frac{1}{x^2} = 102$, then z	$x - \frac{1}{x}$	=					
	(a) 8	(b)	10	(c)	12	(d)	13	
86.	If $49a^2 - b = \left(7a + \frac{1}{2}\right)\left(7a + \frac{1}{2$	$a - \frac{1}{2}$	$\left(\frac{1}{2}\right)$, then value 'b' i	s				
	(a) 0	(h)	<u>1</u>	(c)	1	(d)	<u>1</u>	
		(0)	4	(0)	$\sqrt{2}$	(u)	2	
87.	If the volumes of two c	ubes	are in the ratio 8	: 1, tl	hen ratio of their e	dges	is	
	(a) 8:1	(b)	$2\sqrt{2}:1$	(c)	2:1	(d)	None of these	
88.	The number of surfaces	s of a	hollow cylindrical	obje	ct is			
	(a) 1	(b)	2	(c)	3	(d)	4	
89.	Radius of a wire is decr	ease	d to one third. If vo	lume	e remains the same	e, the	length will become	
	(a) 3 times	(b)	6 times	(c)	9 times	(d)	27 times	
90.	If sum of all the edges	ofac	cube is 36 cm, the	n the	volume (in cm ³) of	that	t cube is	
	(a) 9	(b)	27	(c)	219	(d)	729	

 $\times \cdot \times \cdot \times \cdot \times \cdot \times$

THIS PAGE IS LEFT INTERNOVALIN BLANK